
Asynchronous Interaction Patterns for Mining
Multi-Agent System Models from Event Logs󰂏

Roman A. Nesterov1,2, Irina A. Lomazova1

1 National Research University Higher School of Economics,
20 Myasnitskaya Ulitsa, 101000 Moscow, Russia

2 Dipartimento di Informatica, Sistemistica e Comunicazione,
Università degli Studi di Milano-Bicocca,

Viale Sarca 336 - Edificio U14, I-20126 Milano, Italia

Abstract. Process models discovered from event logs of multi-agent sys-
tems may be complicated and unreadable. To overcome this problem, we
suggest using a compositional approach. A system model is composed
from agent models w.r.t. an interface. Morphisms guarantee that compo-
sition of correct models is correct. This study contributes to the practical
implementation of the morphism-based compositional approach. We use
interaction patterns to model typical interfaces. Experimental evaluation
justifies the practical value of the compositional approach.

Keywords: multi-agent systems, event logs, process discovery, Petri
nets, composition, morphisms, interaction patterns

1 Introduction

Process discovery provides support for companies in managing and improving
their business processes1. Nowadays, companies collect significant amounts of
event data from different sources. For example, ERP (enterprise resource plan-
ning) systems store transaction logs. These event logs are used in process dis-
covery to extract real process models in contrast to manually created models of
idealized processes [2]. A lot of algorithms for automated discovery of process
models have been proposed over recent years [3]. They use a plethora of nota-
tions to represent process models including Petri nets, heuristic nets or BPMN.
In our study, we focus on modeling the control-flow, i.e. causal dependencies
among process activities. For this purpose we use Petri nets [19] to construct
formal (executable) process models.

Process models discovered from event logs of multi-agent systems (MAS)
can be complicated and unreadable. The interaction of several agents produces
rather intricate behavior. For instance, consider the Petri net shown in Fig. 1(a).
It has been discovered from the event log of the MAS with two asynchronously
interacting agents. This model can reproduce event sequences of the original log,
but its structure hides the valuable information on agent interactions.

󰂏

This work is supported by the Basic Research Program at the National Research
University Higher School of Economics.

1

Copyright c© 2019 for this paper by its authors. Use permitted under Creative Com-
mons License Attribution 4.0 International (CC BY 4.0)

To overcome this problem, we suggest using a compositional approach to
discover a MAS process model clearly indicating agents as subnets and their
interactions through channels. Assume that we know in advance how channels
are exploited (sending/receiving messages) by agents. The compositional process
discovery is straightforward. Firstly, we discover process models of agents from
filtered event logs. Then agent models are composed via channels. Consider the
Petri net shown in Fig. 1(b). It can reproduce event sequences from the same
event log as the model from Fig. 1(a). What is more important, this model
explicitly indicates the agent behavior (left and right subnet) and the channels
(gray nodes) used for interaction.

(a)

t1 t2

s1

t4t3

r11 r12

t5 t6 t7

t8 t9

q1 q2

r21 r22

s21 s22

q4q3 q5

q6 q7 q8

(b)

Fig. 1. Discovering process models for multi-agent systems from event logs

Petri net composition has been extensively studied in the literature (e.g. in
[4,8,13]). The main problem here is that composing correct models can result in
a model with the incorrect behavior. We consider soundness (also referred to as
proper termination) to be the key correctness property of process models.

In [6] we have proposed a compositional approach to discover process mod-
els of MAS with two asynchronously interacting agents. This approach involves
abstraction to preserve soundness of agent models in their composition. Abstrac-
tion is implemented via special morphisms [7]. We abstract process models of
agents regarding actions through which they exchange messages. A composition
of abstract agent models is an interaction protocol (interface). Soundness of
agent model composition results from the verified soundness of an interface.

However, the practical implementation of this approach may require extensive
theoretical knowledge. Our work contributes to solving this problem in practice
by applying service interaction patterns (SIPs). They have been described in
[5]. SIPs provide generic solutions for designing composite services with several
interacting entities. We have done the preliminary work on using simple patterns
for compositional discovery of MAS process models in [16,17]. The practical value
of a pattern-based approach has been justified by the experimental results.

In this study, we identify typical patterns describing asynchronous interac-
tion on the basis of related research analysis. Patterns model agent interaction
protocols at the abstract level. Following the approach proposed in [6], we also
show these typical patterns are applied for compositional discovery of sound
MAS models clearly indicating agent interactions.

Another view on the problem of discovering interactions from event logs has
been discussed in [15], where artifact-centric approach to process mining has been
proposed. The authors analyze life-cycles of data objects (artifacts) created and
consumed during a business process execution.

The remainder of the paper is organized as follows. The next section provides
an informal description of service interaction patterns. Section 3 recalls necessary
notions from Petri net theory. Section 4 describes an approach to modeling and
refining abstract service interaction patterns. In Section 5, we show experimental
results on using patterns for mining MAS models from event logs. Section 6
concludes the paper by discussing results and possible continuations.

2 Service Interaction Patterns

Service interaction patterns provide a systematic approach to address the prob-
lem of organizing complex and large-scale interactions. They have been used in
different contexts. Among the others, in [10,11] interaction patterns have also
been explored within process modeling using BPMN. The important problem of
pattern correctness has been discussed in [1,12], where patterns have been for-
malized using process algebras and open Petri nets. The authors used operating
guidelines to define services interacting correctly with the given one.

Service interaction patterns are classified according to the number of inter-
acting entities: (a) bilateral (two) and (b) multilateral (more than two). Also,
service interaction patterns are classified w.r.t. the way entities interact: (a)
single transmission patterns and (b) multiple transmission patterns [5]. The
number of transmissions defines the number of times an agent can send (receive)
a message to (from) the others.

In our work, we study bilateral patterns with both single and multiple trans-
missions. Table 1 provides a brief informal description of patterns considered in
the paper. Short IDs are used to refer to these patterns in the text. Note that
patterns SIP-1, SIP-2 and SIP-3 describe rather primitive interaction, since an
agent sending a message is not supposed to get a response from another agent.
More sophisticated communications are given in patterns SIP-4, SIP-5, SIP-6,
when two agents actually exchange messages in different ways. SIP-7 is a multiple
transmission pattern, where one agent decides to stop exchanging messages.

The aim of our work is to apply these patterns for compositional discovery
of formal multi-agent system models from event logs. That is why, we show how
to model these patterns using Petri nets in Section 4. Each pattern corresponds
to a specification of a protocol according to which agents agree to communicate.
Moreover, these patterns contains only abstract information on agent interaction
providing minimal information on an internal agent behavior. We also describe

Table 1. Bilateral asynchronous interaction patterns

Pattern Short ID Description

Send (Receive) SIP-1 An agent X sends (receives) a message to
(from) an agent Y.

Concurrent Send (Receive) SIP-2 An agent X concurrently sends (receives) sev-
eral messages (>1) to (from) an agent Y.

Sending (Receiving) Choice SIP-3 An agent X sends (receives) exactly one out
of two (or more) alternative message sets to
(from) an agent Y.

Send+Receive SIP-4 An agent X sends a message to an agent Y .
Subsequently, Y sends a response to X.

Concurrent Send+Receive SIP-5 An agent X concurrently sends several mes-
sages (>1) to an agent Y. Then Y sends a re-
sponse to each message received from X.

Sending+Receiving Choice SIP-6 An agent X sends exactly one out of two (or
more) alternative message sets to an agent
Y. Subsequently, Y sends a corresponding re-
sponse to a message received from X.

Multiple Send+Receive SIP-7 The iterative implementation of SIP-4, s.t.
message exchange process continues till an
Agent X does not need responses from an
Agent Y .

how to instantiate (refine) patterns with details of each agent behavior to obtain
sound and structured models of multi-agent systems with two interacting agents.

3 Basic Notions

In this section, we recall definitions from Petri net theory necessary for con-
structing and refining formal models of service interaction patterns.

N denotes the set of non-negative integers. Let A be a set. The set of all
finite non-empty sequences over A is denoted by A+, and A∗ = A+ ∪ {󰂃}, where
󰂃 corresponds to the empty sequence. A function m : A → N defines a multiset
m over A. Let m1,m2 be a pair of multisets over A. The standard set operations
are extended to multisets as well, i.e. (a) m1 ⊆ m2 ⇔ m1(a) ≤ m2(a), (b)
m′ = m1 ∪ m2 ⇔ m′(a) = m1(a) + m2(a) and (c) m′′ = m1 \ m2 ⇔ m′′(a) =
max(0,m1(a)−m2(a)) for all a ∈ A.

A Petri net is a triple N = (P, T, F), where where P and T are two disjoint
sets of places and transitions, i.e. P ∩ T = ∅, and F ⊆ (P × T) ∪ (T × P) is a
flow relation, where dom(F) ∪ cod(F) = P ∪ T . Graphically, places are shown
by circles, transitions — by boxes, and flow relation — by arcs.

Let N = (P, T, F) be a Petri net, and X = P ∪ T . The set •x = {y ∈
X|(y, x) ∈ F} denotes the preset of x ∈ X. The set x• = {y ∈ X|(x, y) ∈ F}
denotes the postset of x ∈ X. Let A ⊆ X, then •A =

󰁖
x∈A

•x, A• =
󰁖

x∈A x•.
By N(A) we denote a subnet of N generated by A, i.e. N(A) = (P ∩ A, T ∩
A,F ∩ (A×A)). Note that we consider nets, s.t. ∀t ∈ T : |•t| ≥ 1 and |t•| ≥ 1.

A marking (state) of a Petri net N = (P, T, F) is a function m : P → N.
A marking is shown by putting m(p) black dots (tokens) inside a place p ∈ P .
A marked Petri net N = (P, T, F,m0) is a Petri net together with its initial
marking m0. A marking m enables a transition t ∈ T , denoted m[t〉, if •t ⊆ m.
The firing t at m leads to a new marking m′ = (m \ •t) ∪ t•, denoted m[t〉m′.

A sequence w ∈ T ∗ is a firing sequence of N = (P, T, F,m0) if w = t1t2 . . . tn
and m0[t1〉m1[t2〉 . . .mn−1[tn〉mn. Then we can write m0[w〉mn. The set of all
firing sequences of N is denoted by FS(N).

A markingm ofN = (P, T, F,m0) is reachable if ∃w ∈ FS(N) : m0[w〉m. Any
reachable marking is reachable from itself, i.e. m[󰂃〉m. The set of all markings
reachable from m is denoted by [m〉. A reachable marking is dead if it does not
enable any transition. N is safe if ∀p ∈ P ∀m ∈ [m0〉 : m(p) ≤ 1. In other words,
in a safe net N we have ∀m ∈ [m0〉 : m ⊆ P .

A state machine is a connected Petri net N = (P, T, F), s.t. ∀t ∈ T : |•t| =
|t•| = 1. A subnet of a marked Petri net N = (P, T, F,m0) identified by a
subset of places A ⊆ P and its neighborhood, i.e. N(A ∪ (•A•)), is a sequential
component of N if it is a state machine and has a single token in the initial
marking. N is covered by sequential components if every place belongs to at
least one sequential component. Then N is state machine decomposable (SMD).

Workflow nets form a special subclass of Petri nets used for modeling pro-
cesses. They have an explicitly specified initial and final state. The initial state is
obviously to correspond with the initial marking. We define generalized workflow
nets which initial and final states are expressed in terms of subsets of places.
Note that SMD GWF-nets are safe.

A marked Petri net N = (P, T, F,m0,mf) is a generalized workflow net
(GWF-net) if and only if:

1. m0 ⊆ P , s.t. •m0 = ∅ and m0 ∕= ∅.
2. mf ⊆ P , s.t. mf

• = ∅ and mf ∕= ∅.
3. ∀x ∈ P ∪ T ∃s ∈ m0 ∃f ∈ mf : (s, x) ∈ F ∗ and (x, f) ∈ F ∗, where F ∗ is the

reflexive transitive closure of F .

The third requirement intuitively means that each node of a GWF-net should
lie on a path from a place in the initial state to a place in the final state. The
correctness of processes modeled via GWF-nets is considered in terms of their
soundness. A GWF-net N = (P, T, F,m0,mf) is sound if and only if:

1. ∀m ∈ [m0〉 : mf ∈ [m〉.
2. ∀m ∈ [m0〉 : mf ⊆ m ⇒ m = mf .
3. ∀t ∈ T ∃m ∈ [m0〉 : m[t〉.

4 Modeling and Refining Abstract Service Interaction
Patterns

Figure 2 shows seven sound and state machine decomposable GWF-nets con-
structed according to the specification of abstract patterns given in Section 2.

Each GWF-net is also a channel-composition of two disjoint GWF-nets. Chan-
nels are places which we add to connect selected transitions of GWF-nets. Chan-
nels model message exchange between two agents. A channel-composition of two
GWF-nets N1 and N2 via a set of channels C is denoted by N1 ⊕C N2, where
C is a parameter. In an abstract pattern N1 ⊕C N2, N1 and N2 are abstract
models of agent behavior. The precise definition of the channel-composition has
been given in [6]. Channels are indicated as small gray places in Fig. 2.

s r

N1 N2

(a) SIP-1

s1 s2 r1 r2

N1 N2

(b) SIP-2

s1 s2 r1 r2

N1 N2

(c) SIP-3

s1 r2

r1 s2

N1 N2

(d) SIP-4

s11 s12 r21 r22

r11 r12 s21 s22

N1 N2

(e) SIP-5

s11 s12 r21 r22

r11 r12 s21 s22

N1 N2

(f) SIP-6

s12 r22

r11

s11

s21

r21

N1 N2

(g) SIP-7

Fig. 2. Channel-composed GWF-nets modeling bilateral interaction patterns

We refine GWF-nets of abstract interaction patterns with detailed models
of agent behavior following the compositional approach described in [6]. Given
a channel-composed GWF-net of an abstract pattern N1 ⊕C N2, N1 and N2 are
refined with agent behavior details. Refinement is implemented with the help of
α-morphisms [7].

The α-morphism is a mapping between two state machine decomposable
GWF-nets: from a refined model to its abstraction. The α-morphism is a to-
tal surjective mapping. It maps nodes of a refined model onto nodes of its
abstraction. Further we denote the α-morphism between two GWF-nets by
ϕ : N1 → N2, where N2 is an abstract model, and N1 is its refinement. Con-
sider the α-morphism ϕ : N ′

1 → N1 shown in Fig. 3(a), where N ′
1 is a refinement

of N1 from the abstract pattern SIP-4. The refinement of places is depicted by
shaded ovals and by the transition labels explicitly, which can also result in split-
ting transitions of an abstract model. As shown in Fig. 3(a), the transition r1 of
the abstract GWF-net N1 is refined (split) by a pair of transitions r11 and r12
of the detailed GWF-net N ′

1, whereas the transition s1 is not refined.

s1

r1

t1 t2

s1

t4t3

r11 r12

t5 t6 t7

t8 t9

'
<latexit sha1_base64="0f4O9rWzmSyadm2Vpgy8VR6nfx0=">AAACynicjVHLSsNAFD2Nr/quunQTLIKrkIigy4IbFy4q2Ae0RSbptB2aF5NJoRR3/oBb/TDxD/QvvDOmoBbRCUnOnHvOnbn3+mkoMuW6ryVraXllda28vrG5tb2zW9nbb2ZJLgPeCJIwkW2fZTwUMW8ooULeTiVnkR/ylj++1PHWhMtMJPGtmqa8F7FhLAYiYIqoVnfCZDoSd5Wq67hm2YvAK0AVxaonlRd00UeCADkicMRQhEMwZPR04MFFSlwPM+IkIWHiHPfYIG9OKk4KRuyYvkPadQo2pr3OmRl3QKeE9Epy2jgmT0I6SVifZpt4bjJr9rfcM5NT321Kf7/IFRGrMCL2L99c+V+frkVhgAtTg6CaUsPo6oIiS266om9uf6lKUYaUOI37FJeEA+Oc99k2nszUrnvLTPzNKDWr90GhzfGub0kD9n6OcxE0Tx3Pdbybs2rNKUZdxiGOcELzPEcNV6ijYap8xBOerWtLWlNr9im1SoXnAN+W9fABFfeSEw==</latexit><latexit sha1_base64="0f4O9rWzmSyadm2Vpgy8VR6nfx0=">AAACynicjVHLSsNAFD2Nr/quunQTLIKrkIigy4IbFy4q2Ae0RSbptB2aF5NJoRR3/oBb/TDxD/QvvDOmoBbRCUnOnHvOnbn3+mkoMuW6ryVraXllda28vrG5tb2zW9nbb2ZJLgPeCJIwkW2fZTwUMW8ooULeTiVnkR/ylj++1PHWhMtMJPGtmqa8F7FhLAYiYIqoVnfCZDoSd5Wq67hm2YvAK0AVxaonlRd00UeCADkicMRQhEMwZPR04MFFSlwPM+IkIWHiHPfYIG9OKk4KRuyYvkPadQo2pr3OmRl3QKeE9Epy2jgmT0I6SVifZpt4bjJr9rfcM5NT321Kf7/IFRGrMCL2L99c+V+frkVhgAtTg6CaUsPo6oIiS266om9uf6lKUYaUOI37FJeEA+Oc99k2nszUrnvLTPzNKDWr90GhzfGub0kD9n6OcxE0Tx3Pdbybs2rNKUZdxiGOcELzPEcNV6ijYap8xBOerWtLWlNr9im1SoXnAN+W9fABFfeSEw==</latexit><latexit sha1_base64="0f4O9rWzmSyadm2Vpgy8VR6nfx0=">AAACynicjVHLSsNAFD2Nr/quunQTLIKrkIigy4IbFy4q2Ae0RSbptB2aF5NJoRR3/oBb/TDxD/QvvDOmoBbRCUnOnHvOnbn3+mkoMuW6ryVraXllda28vrG5tb2zW9nbb2ZJLgPeCJIwkW2fZTwUMW8ooULeTiVnkR/ylj++1PHWhMtMJPGtmqa8F7FhLAYiYIqoVnfCZDoSd5Wq67hm2YvAK0AVxaonlRd00UeCADkicMRQhEMwZPR04MFFSlwPM+IkIWHiHPfYIG9OKk4KRuyYvkPadQo2pr3OmRl3QKeE9Epy2jgmT0I6SVifZpt4bjJr9rfcM5NT321Kf7/IFRGrMCL2L99c+V+frkVhgAtTg6CaUsPo6oIiS266om9uf6lKUYaUOI37FJeEA+Oc99k2nszUrnvLTPzNKDWr90GhzfGub0kD9n6OcxE0Tx3Pdbybs2rNKUZdxiGOcELzPEcNV6ijYap8xBOerWtLWlNr9im1SoXnAN+W9fABFfeSEw==</latexit><latexit sha1_base64="IVa1UYZnF1m0clwxLmwboWGczdo=">AAACynicjVHLSsNAFD2Nr1pfVZdugkVwFRI3uiy4ceGign1AWyRJp+3QvJhMCqW48wfc6oeJf6B/4Z1xCmoRnZDkzLnn3Jl7b5BFPJeu+1qyVlbX1jfKm5Wt7Z3dver+QStPCxGyZphGqegEfs4inrCm5DJinUwwPw4i1g4mlyrenjKR8zS5lbOM9WN/lPAhD31JVLs39UU25nfVmuu4etnLwDOgBrMaafUFPQyQIkSBGAwJJOEIPnJ6uvDgIiOujzlxghDXcYZ7VMhbkIqRwid2Qt8R7bqGTWivcubaHdIpEb2CnDZOyJOSThBWp9k6XujMiv0t91znVHeb0T8wuWJiJcbE/uVbKP/rU7VIDHGha+BUU6YZVV1oshS6K+rm9peqJGXIiFN4QHFBONTORZ9t7cl17aq3vo6/aaVi1T402gLv6pY0YO/nOJdB68zxXMe7OavVHTPqMo5wjFOa5znquEIDTV3lI57wbF1bwppZ80+pVTKeQ3xb1sMHFVeSEQ==</latexit>

N1

N'1
(a) ϕ : N ′

1 → N1

t1 t2

s1

t4t3

r11 r12

t5 t6 t7

t8 t9

q1 q2

r21 r22

s21 s22

q4q3 q5

q6 q7 q8

N'1 N'2
(b) N ′

1 ⊕C N ′
2, |C| = 2

Fig. 3. Refining abstract interaction pattern SIP-4

Note that α-morphisms allow us to substitute places of an abstract net N2

with acyclic subnets of a detailed net N1 (under ϕ : N1 → N2). On the one
hand, when a transition of N1 is mapped to a transition of N2, neighborhoods
of these transitions should also be related by the α-morphism. In Fig. 3(a), the
transition r11 of N ′

1 is mapped to the transition r1 of N1. Correspondingly, the
image of the input place of r11 (under ϕ) is the input place of r1. On the other
hand, when a transition of N1 is mapped to a place of N2, its neighborhood is
also mapped to this place. In Fig. 3(a), the transition t9 is mapped to the final
place of N1. Then its neighborhood is also mapped to the final place of N2.

The main motivation behind α-morphisms is the ability to ensure that prop-
erties of an abstract model hold in its refinement (refer to Lemma 1 in [7]). For
instance, when the transition s1 of N1 from Fig. 3(a) fires, the token is moved to
the place q. Correspondingly, when the transition s1 of N ′

1 fires, no tokens are
left in the subnet ϕ−1(p) of N ′

1 refining the place p of N1.
According to the main result of [6], in the general case one can simultaneously

refine N1 and N2 in their channel-composition N1 ⊕C N2 by N ′
1 and N ′

2, if

there are two corresponding α-morphisms ϕi : N
′
i → Ni for i = 1, 2, obtaining

N ′
1 ⊕C N ′

2 as a result. Moreover, if N1 ⊕C N2, N
′
1 and N ′

2 are sound GWF-nets,
then N ′

1 ⊕C N ′
2 is also a sound GWF-net.

Thus, we can refine interaction patterns with sound GWF-nets corresponding
to the detailed models of agent behavior. As a result, we obtain sound GWF-nets
of multi-agent systems with two asynchronously interacting agents. Therefore,
each pattern defines a class of sound process models for multi-agent systems.

For example, consider the pattern SIP-4 (see Fig. 2(d)). Its refinement is
provided in Fig. 3(b), according to α-morphisms ϕ1 : N

′
1 → N1 given in Fig. 3(a)

and ϕ2 : N
′
2 → N2 indicated by shaded ovals and transition labels. A possible

refinement of the pattern SIP-7 has been given in [6] (see Fig. 5(a) there).
Let us consider the patterns with conflicts (SIP-3, SIP-6 and SIP-7) in more

detail. A set of transitions is in conflict if the share at least one common in-
put place. Conflicts of the abstract model should be properly refined (given by
definition of α-morphisms in [7]). This is clarified in the following example.

Consider refinements of N1 from the pattern SIP-3 shown in Fig. 4. The
refinement shown in Fig. 4(a) is incorrect, since the output places (a, b) of the
shaded subnet have only one outgoing transition, whereas the abstract place p
has the choice between two transitions. The refinement shown in Fig. 4(b) is
valid, since the output places (c, d) of the shaded subnet has “the same choices”
the abstract place p does. Moreover, in the case of the place d, the transition s2
is split into two other transitions (s21 and s22) at the detailed level in N ′

1.

s1 s2

N1

t1 t2

a

N'1

b

s1 s2

p

(a) wrong refinement

s1 s2

N1

t1 t2

c

N'1

d

s1 s1s2 s21 s21

'
<latexit sha1_base64="0f4O9rWzmSyadm2Vpgy8VR6nfx0=">AAACynicjVHLSsNAFD2Nr/quunQTLIKrkIigy4IbFy4q2Ae0RSbptB2aF5NJoRR3/oBb/TDxD/QvvDOmoBbRCUnOnHvOnbn3+mkoMuW6ryVraXllda28vrG5tb2zW9nbb2ZJLgPeCJIwkW2fZTwUMW8ooULeTiVnkR/ylj++1PHWhMtMJPGtmqa8F7FhLAYiYIqoVnfCZDoSd5Wq67hm2YvAK0AVxaonlRd00UeCADkicMRQhEMwZPR04MFFSlwPM+IkIWHiHPfYIG9OKk4KRuyYvkPadQo2pr3OmRl3QKeE9Epy2jgmT0I6SVifZpt4bjJr9rfcM5NT321Kf7/IFRGrMCL2L99c+V+frkVhgAtTg6CaUsPo6oIiS266om9uf6lKUYaUOI37FJeEA+Oc99k2nszUrnvLTPzNKDWr90GhzfGub0kD9n6OcxE0Tx3Pdbybs2rNKUZdxiGOcELzPEcNV6ijYap8xBOerWtLWlNr9im1SoXnAN+W9fABFfeSEw==</latexit><latexit sha1_base64="0f4O9rWzmSyadm2Vpgy8VR6nfx0=">AAACynicjVHLSsNAFD2Nr/quunQTLIKrkIigy4IbFy4q2Ae0RSbptB2aF5NJoRR3/oBb/TDxD/QvvDOmoBbRCUnOnHvOnbn3+mkoMuW6ryVraXllda28vrG5tb2zW9nbb2ZJLgPeCJIwkW2fZTwUMW8ooULeTiVnkR/ylj++1PHWhMtMJPGtmqa8F7FhLAYiYIqoVnfCZDoSd5Wq67hm2YvAK0AVxaonlRd00UeCADkicMRQhEMwZPR04MFFSlwPM+IkIWHiHPfYIG9OKk4KRuyYvkPadQo2pr3OmRl3QKeE9Epy2jgmT0I6SVifZpt4bjJr9rfcM5NT321Kf7/IFRGrMCL2L99c+V+frkVhgAtTg6CaUsPo6oIiS266om9uf6lKUYaUOI37FJeEA+Oc99k2nszUrnvLTPzNKDWr90GhzfGub0kD9n6OcxE0Tx3Pdbybs2rNKUZdxiGOcELzPEcNV6ijYap8xBOerWtLWlNr9im1SoXnAN+W9fABFfeSEw==</latexit><latexit sha1_base64="0f4O9rWzmSyadm2Vpgy8VR6nfx0=">AAACynicjVHLSsNAFD2Nr/quunQTLIKrkIigy4IbFy4q2Ae0RSbptB2aF5NJoRR3/oBb/TDxD/QvvDOmoBbRCUnOnHvOnbn3+mkoMuW6ryVraXllda28vrG5tb2zW9nbb2ZJLgPeCJIwkW2fZTwUMW8ooULeTiVnkR/ylj++1PHWhMtMJPGtmqa8F7FhLAYiYIqoVnfCZDoSd5Wq67hm2YvAK0AVxaonlRd00UeCADkicMRQhEMwZPR04MFFSlwPM+IkIWHiHPfYIG9OKk4KRuyYvkPadQo2pr3OmRl3QKeE9Epy2jgmT0I6SVifZpt4bjJr9rfcM5NT321Kf7/IFRGrMCL2L99c+V+frkVhgAtTg6CaUsPo6oIiS266om9uf6lKUYaUOI37FJeEA+Oc99k2nszUrnvLTPzNKDWr90GhzfGub0kD9n6OcxE0Tx3Pdbybs2rNKUZdxiGOcELzPEcNV6ijYap8xBOerWtLWlNr9im1SoXnAN+W9fABFfeSEw==</latexit><latexit sha1_base64="IVa1UYZnF1m0clwxLmwboWGczdo=">AAACynicjVHLSsNAFD2Nr1pfVZdugkVwFRI3uiy4ceGign1AWyRJp+3QvJhMCqW48wfc6oeJf6B/4Z1xCmoRnZDkzLnn3Jl7b5BFPJeu+1qyVlbX1jfKm5Wt7Z3dver+QStPCxGyZphGqegEfs4inrCm5DJinUwwPw4i1g4mlyrenjKR8zS5lbOM9WN/lPAhD31JVLs39UU25nfVmuu4etnLwDOgBrMaafUFPQyQIkSBGAwJJOEIPnJ6uvDgIiOujzlxghDXcYZ7VMhbkIqRwid2Qt8R7bqGTWivcubaHdIpEb2CnDZOyJOSThBWp9k6XujMiv0t91znVHeb0T8wuWJiJcbE/uVbKP/rU7VIDHGha+BUU6YZVV1oshS6K+rm9peqJGXIiFN4QHFBONTORZ9t7cl17aq3vo6/aaVi1T402gLv6pY0YO/nOJdB68zxXMe7OavVHTPqMo5wjFOa5znquEIDTV3lI57wbF1bwppZ80+pVTKeQ3xb1sMHFVeSEQ==</latexit> p

(b) correct refinement

Fig. 4. Refining conflicts of abstract interaction patterns

5 Mining Structured and Sound Multi-Agent System
Models: Experimental Evaluation

In this section, we show the experimental results on applying interaction pat-
terns described earlier to process discovery within multi-agent systems. We have
compared quality of models synthesized from event logs of multi-agent systems
in two ways: directly and by means of composition with interaction patterns. In
our experiments inductive miner [14] has been used, since it guarantees sound-
ness and state machine decomposability (see Section 3) of discovered models.

5.1 Main Layout of Experiments

The experiments have been conducted according to the plan provided below.

Step 1. Take a service interaction pattern which is modeled in terms of the
channel-composition N1⊕C N2 and refine it by using α-morphisms ϕi : N

′
i → Ni

(i = 1, 2). Thus, obtain a sound system model N ′
1 ⊕N ′

2.
Step 2. Compute an event log L of N ′

1 ⊕ N ′
2 by simulating it using the tool

presented in [18]. This event log is considered to be the main input to the process
discovery algorithm.
Step 3. Discover a GWF-net Nd from the event log L directly.
Step 4. Filter the event log L according to the behavior of individual agents
obtaining the two sub-logs LN ′

1
and LN ′

2
.

Step 5. Discover two sound GWF-nets 󰁨N ′
1 and 󰁨N ′

2 from the sub-logs LN ′
1
and

LN ′
2
computed at the previous step.

Step 6. Having constructed the α-morphism 󰁨ϕi : 󰁨N ′
i → Ni (i = 1, 2), get a

compositionally discovered GWF-net Nc = 󰁨N ′
1 ⊕C

󰁨N ′
2.

Step 7. Compare quality of Nc with that of Nd constructed at Step 4.

The construction of the two α-morphisms at Step 6 is done manually so far.
An algorithm for constructing α-morphisms is subject for further investigations.

There are four main quality dimensions used in process discovery: fitness,
precision, simplicity and generalization [9]. In our experiments, we estimate pre-
cision and simplicity (Step 7). Precision shows how much extra behavior a dis-
covered model adds in comparison with that given in an initial event log.

The (structural) complexity of a discovered process model is captured by the
simplicity dimension. We express a model simplicity through assessing:

– the number of places, transitions and arcs;
– the number of neighboring transitions between different agents.

The following paragraph explains the main idea behind the notion of neighboring
transitions.

Neighboring transitions. Inductive miner produces a sound GWF-net N = (P, T,
F,m0,mf) with transitions labeled by a transition labeling function λ : T →
A∪ {τ}. A is a set of visible event names recorded in an event log from which N
is discovered, whereas τ is a special label of a silent transitions. Silent transitions
do not correspond to any event from an event log.

We introduce the notion of neighboring transitions as an attempt to mea-
sure the extent to which a structure of a discovered model correspond to the
actual multi-agent system structure w.r.t. agent interaction. In other words, we
expect a structured model of a multi-agent system to explicitly indicate behavior
of individual agents as well as the way the communicate by sending/receiving
messages (via channels). Below we give precise definitions.

Let N = (P, T, F,m0,mf) be a GWF-net, and λ : A ∪ {τ} be a transition
labeling function. Two transitions t1, t2 ∈ T , s.t. λ(t1) ∕= τ and λ(t2) ∕= τ , are
called neighboring iff there exists a path in N connecting t1 and t2, where other
transitions are silent. This is expressed symbolically as follows:

– (t1, t2) ∈ F ∗, where F ∗ is the reflexive transitive closure of F , and
– ∀t ∈ T \ {t1, t2} : ((t1, t) ∈ F ∗ ∧ (t, t2) ∈ F ∗) ⇒ λ(t) = τ.

WhenN represents a model for a multi-agent system with two asynchronously
interacting agents X and Y , T = TX∪TY , s.t. TX∩TY = ∅. We are interested in
finding neighboring transition pairs involving different agents. NbN denotes the
number of neighboring transition pairs of N from (TX×TY)∪(TY ×TX), s.t. two
symmetric pairs are counted as a single pair. Intuitively, the bigger the value of
NbN is, the less transparent and understandable the structure N is w.r.t. agent
interaction. NbN of a “perfect” model of a multi-agent system is minimized up
to transitions connected directly via channel places.

Consider two GWF-net fragments shown in Fig. 5, where ti and qi transition
labels correspond to actions of different agents. Silent transitions are indicated
by black boxes. The fragment shown in Fig. 5(a) has 5 neighboring transitions
pairs, whereas NbN of the fragment shown in Fig. 5(b) is 2 corresponding to the
only transitions connected via the small channel place.

t2t1 q1

q2 q3t3

(a) NbN = 5

t1 t2

t3

q1 q2

q3 q4

(b) NbN = 2

Fig. 5. Neighboring transitions

5.2 Experiment Results

Table 2 provides characteristics of event logs artificially prepared for experimen-
tal evaluation. The number of traces has been fixed to 5000. Table 3 presents the
quality comparison of models for multi-agent systems discovered directly (Step
2) and compositionally (Steps 5-7) from a set of prepared event logs (Step 1).

Table 2. Characteristics of artificially generated event logs

SIP-1 SIP-2 SIP-3 SIP-4 SIP-5 SIP-6 SIP-7

Number of events 67366 115078 59851 110000 157532 81279 76889
Min events per trace 12 22 11 22 31 15 6
Max events per trace 15 24 13 22 32 17 97
Avg events per trace 13 23 12 22 32 16 15

The following conclusions can be made based on the results obtained:

1. Compositionally discovered models are more compact w.r.t. the number of
nodes and arcs;

2. Precision of composed models is generally higher in comparison with the
precision of directly discovered models (except for SIP-2 and SIP-4);

Table 3. Quality evaluation of models for multi-agent systems

SIP-1 SIP-2 SIP-3 SIP-4 SIP-5 SIP-6 SIP-7

Direct discovery
Number of places 35 59 42 49 64 72 29
Number of transitions 41 50 46 46 69 84 34
Number of arcs 98 140 112 120 170 198 78
NbN 22 95 25 61 85 117 22
Precision 0,6890 0,5646 0,7768 0,6733 0,4554 0,6586 0,6495

Compositional discovery
Number of places 33 55 35 46 69 66 29
Number of transitions 32 49 35 39 57 72 28
Number of arcs 76 133 86 102 155 157 72
NbN 4 6 6 4 7 14 12
Precision 0,8017 0,4477 0,8162 0,6745 0,4342 0,8414 0,8500

3. Using compositional approach results in minimizing NbN up to transitions
connected only via channel places.

In the case of patterns SIP-2 and SIP-4, precision decrease stems from the
structure of the agent models and the lack of event data. Compositionally dis-
covered models with concurrent branches allow for more behavior in comparison
with directly discovered models. However, precision of these models will grow, if
event logs have more examples (more traces) of the possible observed behavior.

6 Conclusion

This paper deals with the problem of discovering structured and sound models
of multi-agent systems from their event logs. The proposed approach is based on
using asynchronous service interaction patterns. A system model is composed
from two agent models w.r.t. an interaction pattern. We have constructed for-
mal models of seven typical interaction patterns. They describe communication
between two agents at the abstract level. By using channel-composition and α-
morphisms as described in [6], we show how abstract pattern models can be
refined to obtain sound models of multi-agent systems.

We have conducted the series of experiments on using the proposed interac-
tion patterns for compositional process discovery. Experiment results show that
composition allows us to obtain more compact and precise models. Moreover, the
structure of compositionally discovered models explicitly indicates agents as sub-
nets and their interaction as channel places. To quantify it, we have introduced
the notion of neighboring transitions. The number of neighboring transitions in
composed models is exactly the number of transitions connected via channels.

The future research will be focused on working with more general multilateral
patterns involving k (more than two) interaction agents. We also plan to conduct
more experiments applying other process discovery algorithms provided that
discovered models meets necessary requirements. Note also that formal models
of the proposed patterns can be regularly composed (sequencing, alternative of
parallel composition) producing more complex interaction patterns.

References

1. van der Aalst, W.M.P., Mooij, A., Stahl, C., Wolf, K.: Service interaction: Patterns,
formalization, and analysis. In: SFM 2009. LNCS, vol. 5569, pp. 42–88. Springer,
Heidelberg (2009)

2. van der Aalst, W.: Process Mining - Data Science in Action. Springer, 2 edn. (2016)
3. Augusto, A., Conforti, R., Dumas, M., Rosa, M.L., Maggi, F.M., Marrella, A.,

Mecella, M., Soo, A.: Automated discovery of process models from event logs:
Review and benchmark. IEEE TKDE (2018)

4. Baldan, P., Corradini, A., Ehrig, H., Heckel, R.: Compositional modeling of reac-
tive systems using open nets. In: CONCUR 2001. LNCS, vol. 2154, pp. 502–518.
Springer (2001)

5. Barros, A., Dumas, M., ter Hofstede, A.: Service interaction patterns. In: BPM
2005. LNCS, vol. 3649, pp. 302–318. Springer, Heidelberg (2005)

6. Bernardinello, L., Lomazova, I., Nesterov, R., Pomello, L.: Compositional discovery
of workflow nets from event logs using morphisms. In: Proceedings of ATAED-2018.
CEUR Workshop Proceedings, vol. 2115, pp. 23–38. CEUR-WS.org (2018)

7. Bernardinello, L., Mangioni, E., Pomello, L.: Local state refinement and compo-
sition of elementary net systems: An approach based on morphisms. In: ToPNoC
VIII. LNCS, vol. 8100, pp. 48–70. Springer, Heidelberg (2013)

8. Best, E., Devillers, R., Hall, J.G.: The box calculus: A new causal algebra with
multi-label communication. LNCS, vol. 609, pp. 21–69. Springer (1992)

9. Buijs, J.C.A.M., van Dongen, B.F., van der Aalst, W.M.P.: On the role of fitness,
precision, generalization and simplicity in process discovery. In: OTM 2012. pp.
305–322. Springer, Heidelberg (2012)

10. Campagna, D., Kavka, C., Onesti, L.: Bpmn 2.0 and the service interaction pat-
terns: Can we support them all? In: ICSOFT 2014. CCIS, vol. 555, pp. 3–20.
Springer, Heidelberg (2015)

11. Decker, G., Barros, A.: Interaction modeling using bpmn. In: BPM 2007 Work-
shops. LNCS, vol. 4928, pp. 208–219. Springer, Heidelberg (2008)

12. Decker, G., Puhlmann, F., Weske, M.: Formalizing service interactions. In: BPM
2006. LNCS, vol. 4102, pp. 414–419. Springer, Heidelberg (2006)

13. Girault, C., Valk, R.: Petri Nets for Systems Engineering: A Guide to Modeling,
Verification, and Applications. Springer, Heidelberg (2003)

14. Leemans, S., Fahland, D., van der Aalst, W.M.P.: Discovering block-structured
process models from event logs - a constructive approach. In: PETRI NETS 2013.
LNCS, vol. 7927, pp. 311–329. Springer, Heidelberg (2013)

15. Lu, X., Nagelkerke, M., v. d. Wiel, D., Fahland, D.: Discovering interacting artifacts
from erp systems. IEEE Transactions on Services Computing 8(6), 861–873 (2015)

16. Nesterov, R.A., Lomazova, I.A.: Using interface patterns for compositional discov-
ery of distributed system models. Proceedings of the Institute for System Program-
ming 29(4), 21–38 (2017)

17. Nesterov, R.A., Lomazova, I.A.: Compositional process model synthesis based on
interface patterns. In: TMPA 2017. CCIS, vol. 779, pp. 151–162. Springer (2018)

18. Nesterov, R.A., Mitsyuk, A., Lomazova, I.A.: Simulating behavior of multi-agent
systems with acyclic interactions of agentss. Proceedings of the Institute for System
Programming 30(3), 285–302 (2018)

19. Reisig, W.: Understanding Petri Nets: Modeling Techniques, Analysis Methods,
Case Studies. Springer (2013)

